Postsynaptic TrkC and Presynaptic PTPσ Function as a Bidirectional Excitatory Synaptic Organizing Complex
نویسندگان
چکیده
Neurotrophin receptor tyrosine kinases (Trks) have well-defined trophic roles in nervous system development through kinase activation by neurotrophins. Yet Trks have typical cell-adhesion domains and express noncatalytic isoforms, suggesting additional functions. Here we discovered noncatalytic TrkC in an unbiased hippocampal neuron-fibroblast coculture screen for proteins that trigger differentiation of neurotransmitter release sites in axons. All TrkC isoforms, but not TrkA or TrkB, function directly in excitatory glutamatergic synaptic adhesion by neurotrophin-independent high-affinity trans binding to axonal protein tyrosine phosphatase receptor PTPσ. PTPσ triggers and TrkC mediates clustering of postsynaptic molecules in dendrites, indicating bidirectional synaptic organizing functions. Effects of a TrkC-neutralizing antibody that blocks TrkC-PTPσ interaction and TrkC knockdown in culture and in vivo reveal essential roles of TrkC-PTPσ in glutamatergic synapse formation. Thus, postsynaptic TrkC trans interaction with presynaptic PTPσ generates bidirectional adhesion and recruitment essential for excitatory synapse development and positions these signaling molecules at the center of synaptic pathways.
منابع مشابه
Neurotrophin-3 Enhances the Synaptic Organizing Function of TrkC-Protein Tyrosine Phosphatase σ in Rat Hippocampal Neurons.
Neurotrophin-3 (NT-3) and its high-affinity receptor TrkC play crucial trophic roles in neuronal differentiation, axon outgrowth, and synapse development and plasticity in the nervous system. We demonstrated previously that postsynaptic TrkC functions as a glutamatergic synapse-inducing (synaptogenic) cell adhesion molecule trans-interacting with presynaptic protein tyrosine phosphatase σ (PTPσ...
متن کاملStructural basis for extracellular cis and trans RPTPσ signal competition in synaptogenesis
Receptor protein tyrosine phosphatase sigma (RPTPσ) regulates neuronal extension and acts as a presynaptic nexus for multiple protein and proteoglycan interactions during synaptogenesis. Unknown mechanisms govern the shift in RPTPσ function, from outgrowth promotion to synaptic organization. Here, we report crystallographic, electron microscopic and small-angle X-ray scattering analyses, which ...
متن کاملEffects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats
Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...
متن کاملSALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development
Synaptogenic adhesion molecules play critical roles in synapse formation. SALM5/Lrfn5, a SALM/Lrfn family adhesion molecule implicated in autism spectrum disorders (ASDs) and schizophrenia, induces presynaptic differentiation in contacting axons, but its presynaptic ligand remains unknown. We found that SALM5 interacts with the Ig domains of LAR family receptor protein tyrosine phosphatases (LA...
متن کاملExercise-Induced Fatigue Impairs Bidirectional Corticostriatal Synaptic Plasticity
Exercise-induced fatigue (EF) is a ubiquitous phenomenon in sports competition and training. It can impair athletes' motor skill execution and cognition. Corticostriatal synaptic plasticity is considered to be the cellular mechanism of movement control and motor learning. However, the effect of EF on corticostriatal synaptic plasticity remains elusive. In the present study, using field excitato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 69 شماره
صفحات -
تاریخ انتشار 2011